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Global illumination – GI 

2 

Direct illumination 



Review: 
Reflection equation 

 “Sum” (integral) of contributions over the hemisphere: 
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From local reflection to global light 
transport 

 Reflection equation (local reflection) 
 
 

 
 Where does the incoming radiance Li(x, ωi) come from? 

 From other places in the scene ! 
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Lo( r(x, ωi), -ωi) 
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Ray casting function 
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From local reflection to global light 
transport 

 Plug for Li  into the reflection equation 
 
 
 
 

 
 Incoming radiance Li drops out 
 Outgoing radiance Lo at x described in terms of Lo at 

other points in the scene 
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Rendering equation 

 Remove the subscript “o” from the outgoing radiance: 
 
 
 
 
 

 Description of the steady state = energy balance in the 
scene 

 Rendering = calculate L(x, ωo) for all points visible 
through pixels, such that it fulfils the rendering equation 
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 Reflection equation 
 Describes local light reflection at a single point 
 Integral that can be used to calculate the outgoing 

radiance if we know the incoming radiance 

 
 

 Rendering equation 
 Condition on the global distribution of light in scene 
 Integral equation – unknown quantity L on both sides 

Reflection equation vs.   
    Rendering equation 
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Rendering Equation – Kajiya 1986 
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Path tracing sketch 
 



Recursive unwinding of the RE 

 Angular form of the RE 
 
 

 To calculate L(x, ωo), we need to calculate L(r(x, ω’), −ω’) 
for all directions ω’ around the point x 

 For the calculation of each L(r(x, ω’), −ω’), we need to do 
the same thing recursively, 

 etc. 

∫ ⋅→⋅−+=
)(

ooeo 'd'cos)',()'),',(r(),(),(
x

xxxx
H

rfLLL ωθωωωωωω

x 

ω’ 
r(x, ω’) 

ω’’ 

ωo 

r( r(x,ω’), ω’) 

CG III (NPGR010) - J. Křivánek 2015 



Path tracing, v. zero  (recursive form) 

getLi (x, ω): 
 y = traceRay(x, ω) 
 return  
  Le(y, –ω) +    // emitted radiance 
  Lr (y, –ω)   // reflected radiance 
 
Lr(x, ω): 
 ω′ = genUniformHemisphereRandomDir( n(x) ) 
 return 2π * brdf(x, ω, ω′)  * dot(n(x), ω′) * getLi(x, ω′) 
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Back to the theory: 
Angular and area form of the 
rendering equation 



Angular vs. area form of the RE 

 Angular form 
 integral over the hemisphere in incoming directions 
 
 
 
 
 

 Substitution 
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Angular vs. area form of the RE 

 Area form 
 Integral over the scene surface 
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Angular form 

 Add radiance contributions to a point from all directions 
 

 For each direction, find the nearest surface 
 

 Implementation in stochastic path tracing: 
 For a given x, generate random direction(s), for each find 

the nearest intersection, return the outgoing radiance at 
that intersection and multiply it with the cosine-weighted 
BRDF. Average the result of this calculation over all the 
generated directions over the hemisphere. 
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Area form 

 Sum up contributions to a point from all other points on 
the scene surface 
 

 Contribution added only if the two points are mutually 
visible 
 

 Implementation in stochastic path tracing: 
 Generate randomly point y on scene geometry. Test 

visibility between x and y. If mutually visible, add the 
outgoing radiance at y modulated by the geometry factor. 

 
 Typical use: direct illumination calculation for area 

light sources 
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Most rendering algorithms = 
(approximate) solution of the RE  

 Local illumination (OpenGL) 
 Only point sources, integral becomes a sum 
 Does not calculate equilibrium radiance, is not really a 

solution of the RE 
 

 Finite element methods (radiosity) [Goral, ’84] 
 Discretize scene surface (finite elements) 
 Disregard directionality of reflections: everything is 

assumed to be diffuse 
 Cannot reproduce glossy reflections 
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Most rendering algorithms = 
(approximate) solution of the RE  

 Ray tracing [Whitted, ’80] 
 Direct illumination on diffuse and glossy surfaces due to 

point sources 
 Indirect illumination only on ideal mirror reflection / 

refractions 
 Cannot calculate indirect illumination on diffuse and glossy 

scenes, soft shadows etc. … 
 

 Distributed ray tracing [Cook, ’84] 
 Estimate the local reflection using the MC method 
 Can calculate soft shadows, glossy reflections, camera 

defocus blur, etc. 
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Most rendering algorithms = 
(approximate) solution of the RE  

 Path tracing [Kajiya, ’86] 
 True solution of the RE via the Monte Carlo method 
 Tracing of random paths (random walks) from the camera 
 Can calculate indirect illumination of higher order 
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From the rendering equation 
to finite element radiosity 
 
 



From the rendering equation to 
radiosity 

 Start from the area form of the RE: 
 
 
 
 

 The Radiosity method– assumptions 
 Only diffuse surfaces (BRDF constant in ωi and ωo) 
 Radiosity (i.e. radiant exitance) is spatially constant (flat) 

over  the individual elements 
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From the rendering equation to 
radiosity 

 Diffuse surfaces only 
 The BRDF is constant in ωi and ωo 

 

 
 
 

 Outgoing radiance is independent of ωo and it is 
equal to radiosity B divided by π 
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From the rendering equation to 
radiosity 

 Spatially constant (flat) radiosity B of the contributing 
surface elements 
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From the rendering equation to 
radiosity 

 Spatially constant (flat) radiosity of the receiving 
surface element i: 
 Average radiosity over the element 
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Classic radiosity equation 

 System of linear equations 
 
 
 

 Form factors 
 
 
 

 Conclusion: the radiosity method is nothing but a way 
to solve the RE under a specific set of assumptions 
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Radiosity method 

 Classical radiosity 
1. Form facto calculation (Monte Carlo, hemicube, …) 
2. Solve the linear system (Gathering, Shooting, …) 
 

 Stochastic radiosity 
 Avoids explicit calculation of form factors 
 Metoda Monte Carlo 

 
 Radiosity is not practical, not used 

 Scene subdivision -> sensitive to the quality of the geometry 
model (but in reality, models are always broken) 

 High memory consumption, complex implementation 
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The operator form of the RE 



RE is a Fredhom integral equation of 
the 2nd kind 

General form the Fredholm integral equation of the 2nd kind 
 
 
 
 
 

Rendering equation: 
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Linear operators 

 Linear operators act on functions 
 (as matrices act on vectors) 

 
 

 The operator is linear if the “acting” is a linear operation 
 
 

 Examples of linear operators 
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Transport operator 
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Solution of the RE in the operator 
form 
 

 
 
 
 
 
 

 Rendering equation 
 
 
 

 Formal solution 
 
 
 
 
 unusable in practice – the inverse cannot be 

explicitly calculated 
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Expansion of the rendering equation 

 Recursive substitution L 
 
 
 
 
 

 n-fold repetition yields the Neumann series 
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Expansion of the rendering equation 

 If T is a contraction (tj. ||T|| < 1, which holds for the 
RE), then 
 
 
 

 Solution of the rendering equation is then given by  
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A different derivation of the Neumann 
series 

 Formal solution of the rendering equation 
 
 

 Proposition 
 

 Proof 
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 Solution: Neumann series 
 

 

Rendering equation 
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Progressive approximation 
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Progressive approximation 

 Each application of T corresponds to one step of 
reflection & light propagation 
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Contractivity of T 

 Holds for all physically correct models 
 Follows from the conservation of energy 
 

 It means that repetitive application of the operator lower 
the remaining light energy (makes sense, since 
reflection/refraction cannot create energy) 
 

 Scenes with white or highly specular surfaces 
 reflectivity close to 1 
 to achieve convergence, we need to simulate more bounces 

of light 
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Alright, so what have we achieved? 

 
 
 

 We have replaced an integral equation by a sum of 
simple integrals 

 Great we know how to calculate integrals numerically 
(the Monte Carlo method), which means that we know 
how to solve the RE, and that means that we can render 
images, yay! 

 Recursive application to T corresponds to the recursive 
ray tracing from the camera 
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What exact integral are we evaluating, 
then? 
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Paths vs. recursion: Same thing, 
depends on how we look at it 

 Paths in a high-dimensional path space 
 
 
 

 Recursive solution of a series of nested (hemi)spherical 
integrals: 
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Recursive interpretation 

 Angular form of the RE 
 
 

 To calculate L(x, ωo) I need to calculate L(r(x, ω’), −ω’) 
for all directions ω’ around the point x. 

 For the calculation of each L(r(x, ω’), −ω’) I need to do 
the same thing recursively 

 etc. 
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We’ve seen this already, right?  
But unlike at the beginning of  
the lecture, by now we know this 
actually solves the RE. 



Path tracing, v. zero  (recursive form) 

getLi (x, ω): 
 y = traceRay(x, ω) 
 return  
  Le(y, –ω) +    // emitted radiance 
  Lr (y, –ω)   // reflected radiance 
 
Lr(x, ω): 
 ω′ = genUniformHemisphereRandomDir( n(x) ) 
 return 2π * brdf(x, ω, ω′)  * dot(n(x), ω′) * getLi(x, ω′) 
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Path tracing, v. 2012, Arnold Renderer 
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Path tracing [Kajiya86] 

 Only one secondary ray at each intersection 
 Random selection of interaction (diffuse reflection, 

refraction, etc., …) 
 Direct illumination: two strategies 

 Hope that the generated secondary ray hits the light source, 
or 

 Explicitly pick a point on the light source 
 Trace hundreds of paths through each pixel and average 

the result 
 Advantage over distributed ray tracing: now branching of 

the ray tree means no explosion of the number of rays 
with recursion depth 
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